NASA’s Outer Space Additive Manufacturing Facility Targets “Alien Market”

Just when you thought things could not get any crazier, NASA has set up an additive manufacturing plant in space that could take 3D printing orders from aliens. 

NASA’s advanced manufacturing system has been installed on the International Space Station and is said to be attracting considerable interest from unknown beings across the cosmos.

Originally intended as an emergency tool shop for the ISS crew, the zero-gravity 3D printing facility is now being made available to extraterrestrial customers across the universe.

While NASA is still waiting for its first alien customers, Earthlings are taking a strong interest in the system created by a company called Made In Space

NASA has in the past talked about 3D printing entire spacecraft and other structures while out in space, and so have other space agencies, such as ESA, which wants to build holiday resorts on the Moon and space cities on Mars and space colonies that just remain floating, out in space.

NASA is funding a multi-billion-dollar, long-term project called Archinaut, intended to develop additive manufacturing and 3D printing in outer space, and Made In Space is one of the companies involved.

Andrew Rush, president of Made In Space, says: “Archinaut is being designed from the ground up to be a truly cross-cutting technology, providing entirely new space capabilities for NASA and other government missions as well as both pre-existing commercial satellite manufacturers and emerging commercial space platforms.”

Alien technology for Earthlings 

Meanwhile, back on Earth, additive manufacturing has been much-heralded as the more convenient and efficient answer to a lot of important manufacturing questions on the minds of those who live and grow old on Earth, such as, “Can you 3D print some false teeth for my dad?”

3D printers are changing large swathes of the manufacturing industry, even though the machines are still considered at the early stages of their evolution, with early adopters looking at paying $1 million for an advanced model.

Stratasys, which manufactures 3D printers, says the technology is set to have an “imminent impact” on the way things are made.

Stratasys conducted a survey into additive manufacturing, questioning some 700 designers, engineers and executives in relevant industries.

The survey found that three-quarters of businesses expect to increase their investment in additive manufacturing, or 3D printing. And additive metal use is expected to double over the next couple of years.

“For those of us working in, around and with 3D printing, it’s an incredibly exciting time,” says Joe Allison, CEO of Stratasys, in the foreword to the report.

Additional additive solutions centre 

Needless to say, the additive manufacturing industry is growing. In a couple of months from now, global engineering technologies company Renishaw plans to open what it says is the UK’s first “solutions centre” for additive manufacturing.

The company this week hosted a visit at its Stone, Staffordshire Site from the Member of the European Parliament for West Midlands, Anthea McIntyre, and chief executive officer of the Manufacturing Technologies Association, James Selka.

Accompanied by Renishaw’s head of global additive manufacturing, Clive Martell, and marketing manager of Renishaw’s additive manufacturing products division, Robin Weston, the visitors were given a tour of the 90,000 square ft additive manufacturing facility based on Brooms Road, on the Stone Business Park.

Renishaw’s new Staffordshire site contains fully equipped research and development facilities and an advanced additive manufacturing lab.

Renishaw says this is the UK’s first Solutions Centre, and is set to open in July. The Solutions Centres offer companies that want to test the capabilities of metal additive manufacturing and 3D printing access to Renishaw’s AM machines, expertise and equipment.

Renishaw has a global network of such Solutions Centres.

Currently serving as the employment spokesperson in the European Parliament, MEP McIntyre met some of Renishaw’s employees at the Stone site.

Reflecting on her visit to Renishaw Stone, McIntyre says: “As a major British exporter, Renishaw is doing incredible things for the employment landscape in the West Midlands. The company’s apprenticeship and employee training schemes are excellent examples of what UK manufacturers should do to help bridge the skills gap and equip employees with the right skills for the future.”

MTA boss Selka says: “As the UK’s only manufacturer of metal additive manufacturing machines, Renishaw is working with OEMs [original equipment manufacturers] and industry to help lower the entry barriers to the technology.

“The generous Stone facility is a unique additive manufacturing operation in the UK. It is equipped with state-of-the-art R&D facilities, training and lecture rooms, creating the perfect hub for ideas, projects and knowledge for the future of the UK’s additive manufacturing industry.

“It’s great to see a British company pushing the boundaries of such an innovative technology that has the potential to change manufacturing as we know it.”

This article originally appeared in Robotics & Automation News.


Nondestructive Testing Ensures Manufacturing Quality

This interview is republished with permission from NASA Tech Briefs

Dr. Ajay Koshti, Lead Nondestructive Evaluation Engineer, invented NASA Flash Infrared Thermography Software. Koshti also worked as a Nondestructive Evaluation (NDE) Engineer on NASA Space Shuttle Orbiter for 23 years.

NASA Tech Briefs: Ajay, Your September Webinar with us will focus on infrared (IR) flash thermography software. To set the stage, what is infrared (IR) flash thermography software?

Dr. Ajay Koshti: It is a post-processing software, so let me describe the flash thermography process. It’s a non-destructive evaluation process used to detect delaminations and voids in composites, primarily nonmetallic Non-destructive testingcomposites. These materials are used on NASA flight hardware, so they are critical structure materials. Flash thermography is one of the nondestructive evaluation methods to inspect these materials for internal flaws.

In this process, you have an infrared camera, used to acquire the image data. Flash lamps momentarily heat up the part under inspection. As soon as the flash occurs, you acquire the data of surface temperature, using the infrared camera, and that data is analyzed to detect internal flaws, such as voids and delamination.

Usually we use a commercial software to acquire the data and provide some post-processing to analyze it. I developed a separate software to analyze the data. Primarily, [with the separate software], we are looking for quantitative evaluation of the data. When you have internal flaws, you want to have a quantifiable response that can be measured repeatedly; even if you change the camera systems, you should get the same response on the same defect.

That was the starting point: to understand and define the signal response from the flaws. That’s where it started out: with the concept of normalized contrast. The response is normalized between -1 and +1. It’s very repeatable.

Going beyond that, once the response is the characteristics of a flaw, you can start characterizing the flaws for the depth and diameter. That’s based on calibration. You get these responses from various flaws, diameters, and depths. Then, you teach the system to identify or interpolate flaw sizes based on these responses. It’s a calibration process. Using the contrast methodology, you can also reduce the noise in the response. You essentially have a reflection component in infrared imagery, which comes from reflection of heat that is coming from the background. If you are able to remove that, you improve your signal response.

One of the other iterations I have is drawing the boundary around the defect indication. That’s called the half-max. It looks for a location of 50% signal drop around the indication area, and then it draws a boundary. That gives you a most accurate way of sizing the defect. You can estimate depth of the defect. Upon calibration, it even gives you an idea about gapping within the defect.

NTB: How are these subsurface flaws being formed?

Dr. Koshti: Flaws are formed due to many reasons. Many of these structures are laminated, which means that in the assembly itself, you use sheets or layers, which are then stacked, put in autoclave, and bonded. They start out with layered construction. Many times, in manufacturing between layers, they may not bond properly. That’s delamination, or separation between layers.

These are also damage-prone. If there is an impact, or if something falls on the part, it will have a tendency to have delamination. Layers will separate. You can also inspect these materials for handling damage. Currently, for example, on the Space Shuttle program, reinforced carbon-carbon composite material is being used on the wing leading edge and also on the nose cap. It’s a layered material that is exposed to reentry temperatures in excess of 3000 °F.

These materials heat up and expand, and form microcracks. Through those microcracks, a small amount of oxidation will occur. This results in separation below the outside layer, which is silicon carbide. The inner ones are carbon-carbon, which are providing structural strength, while the upper layer is refractory, providing high temperature capability.

NTB: How is the flash thermography software being used currently?

Dr. Koshti: Initially we started using it on the Space Shuttle program. Though microcracks are not detrimental, excessive oxidation caused by these microcracks can become structurally significant issues. Monitoring of very small indications is important so that you can confirm the structural integrity of the part.

There was a need to quantify an indication. That’s where the normalized contrast type approach was used initially: to assess if there is a growth of these indications between flights. More than that, because these responses are repeatable, you can then analyze them, once calibrated, for what size of flaw you have, what depth it is, and what kind of gapping is occurring. Now with image processing, you can actually use it for inspection: to detect and locate flaws in composite hardware for NASA at JSC. When you have to do finer analysis, you can go ahead and use this software.

NTB: What are some applications with nondestructive evaluation (NDE) testing?

Dr. Koshti: The Boeing 787 is primarily a composite structure. Thermography is very applicable there. The typical applications for thermography are for composites, even outside aerospace. Outside aerospace, composites are used in many places as reinforcement. Graphite fibers, for example, are often used to reinforce columns. Many small boats are made out of composite fiberglass. Again, to detect impact damage, you could use it for those structures. The software can be used anywhere that there are composite structures, even bathtubs that are made out of fiberglass.

NTB: Compared to traditional methods of measuring, what makes the thermography software a better option?

Dr. Koshti: The previous software is more qualitative in nature. When you take a video, the data itself is in the video. What I’m doing: I convert the video data to contrast data. So I’ve taken the first step to enhance the data.

Ultimately, visual detection is done by looking at the differences from an indication with respect to its surroundings. Our contrast is in a different domain. It’s in a contrast, and it’s not in a raw domain. I do a certain processing on it. I go ahead and look for where the contrast is maximum, and create composite images showing that. So things that you would do to go through the data by playing it back and forth: It’s done by the software. It gives you those images right away, and so it saves you time. Image processing enhances the results.

The primary idea was also to be able to quantify these images. The images have a scale. The software gives you the normalized contrast values, so you can actually read what the actual value you’re getting from various indications. Those indications can also be analyzed for their size, depth, based on calibration.

This is actually the philosophy of ultrasonic inspection. You calibrate your instrument on known flaws, and then use that to interpret your data. I’m bringing the well-known ultrasonic testing metrology of calibration and evaluation of data into flash thermography. This is the first time anyone has done that. This allows NDE personnel to understand flash thermography as analogous to pulse-echo ultrasonic testing. They can use the ultrasonic testing knowledge and apply it in thermography and do the inspection at the same level of rigor and same quantitative manner, knowing exact signal responses and basing the reject level on the known level of signal responses. This brings thermography from just visual, qualitative evaluation to a quantitative, objective evaluation.

To learn more about NASA Flash Infrared Thermography Software, read a full transcript, or listen to a downloadable podcast, visit